Hypothalamic Protein Kinase C Regulates Glucose Production
نویسندگان
چکیده
OBJECTIVE A selective rise in hypothalamic lipid metabolism and the subsequent activation of SUR1/Kir6.2 ATP-sensitive K(+) (K(ATP)) channels inhibit hepatic glucose production. The mechanisms that link the ability of hypothalamic lipid metabolism to the activation of K(ATP) channels remain unknown. RESEARCH DESIGN AND METHODS To examine whether hypothalamic protein kinase C (PKC) mediates the ability of central nervous system lipids to activate K(ATP) channels and regulate glucose production in normal rodents, we first activated hypothalamic PKC in the absence or presence of K(ATP) channel inhibition. We then inhibited hypothalamic PKC in the presence of lipids. Tracer-dilution methodology in combination with the pancreatic clamp technique was used to assess the effect of hypothalamic administrations on glucose metabolism in vivo. RESULTS We first reported that direct activation of hypothalamic PKC via direct hypothalamic delivery of PKC activator 1-oleoyl-2-acetyl-sn-glycerol (OAG) suppressed glucose production. Coadministration of hypothalamic PKC-delta inhibitor rottlerin with OAG prevented the ability of OAG to activate PKC-delta and lower glucose production. Furthermore, hypothalamic dominant-negative Kir6.2 expression or the delivery of the K(ATP) channel blocker glibenclamide abolished the glucose production-lowering effects of OAG. Finally, inhibition of hypothalamic PKC eliminated the ability of lipids to lower glucose production. CONCLUSIONS These studies indicate that hypothalamic PKC activation is sufficient and necessary for lowering glucose production.
منابع مشابه
Hypothalamic AMP-Activated Protein Kinase Regulates Glucose Production
OBJECTIVE The fuel sensor AMP-activated protein kinase (AMPK) in the hypothalamus regulates energy homeostasis by sensing nutritional and hormonal signals. However, the role of hypothalamic AMPK in glucose production regulation remains to be elucidated. We hypothesize that bidirectional changes in hypothalamic AMPK activity alter glucose production. RESEARCH DESIGN AND METHODS To introduce bi...
متن کاملAMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase.
The AMP-activated kinase (AMPK) senses the energy status of cells and regulates fuel availability, whereas hypothalamic AMPK regulates food intake. We report that inositol polyphosphate multikinase (IPMK) regulates glucose signaling to AMPK in a pathway whereby glucose activates phosphorylation of IPMK at tyrosine 174 enabling the enzyme to bind to AMPK and regulate its activation. Thus, refeed...
متن کاملBrain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs.
In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought abou...
متن کاملBrain GLP-1 Signaling Regulates Femoral Artery Blood Flow and Insulin Sensitivity Through Hypothalamic PKC-δ
OBJECTIVE Glucagon-like peptide 1 (GLP-1) is a gut-brain hormone that regulates food intake, energy metabolism, and cardiovascular functions. In the brain, through a currently unknown molecular mechanism, it simultaneously reduces femoral artery blood flow and muscle glucose uptake. By analogy to pancreatic β-cells where GLP-1 activates protein kinase C (PKC) to stimulate insulin secretion, we ...
متن کاملGlucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: additive effects of leptin or insulin.
The mammalian hypothalamus comprises an array of phenotypically distinct cell types that interpret peripheral signals of energy status and, in turn, elicits an appropriate response to maintain energy homeostasis. We used a clonal representative hypothalamic cell model expressing proopiomelanocortin (POMC; N-43/5) to study changes in AMP-activated protein kinase (AMPK) activity and glucose respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 57 شماره
صفحات -
تاریخ انتشار 2008